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ABSTRACT 

Financial mathematics plays a pivotal role in various aspects of modern economics and 

finance. This paper provides an introduction to the fundamental concepts, theories, and 

applications of financial mathematics. It begins by outlining the basic principles of financial 

mathematics, including the time value of money, interest rates, and compounding. 

Computational programs enhance these mathematical models, offering robust solutions and 

efficient computation for complex financial problems. This study explores the integration of 

computational programs with financial mathematics, their methodologies, and applications in 

the finance sector. The results underscore the significance of computational methods in 

improving the accuracy, speed, and scalability of financial models, ultimately contributing to 

better decision-making and risk management. We explore fundamental concepts, models, and 

techniques employed in financial mathematics, aiming to provide a comprehensive 

understanding of their applications and significance in real-world financial scenarios. This 

paper provides a comprehensive overview of the application of differential equations in 

financial mathematics, highlighting key models such as the Black-Scholes model, interest rate 

models, and optimal investment strategies. 
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INTRODUCTION: 

Financial mathematics, also known as mathematical 

finance or quantitative finance, is an interdisci-

plinary field that applies mathematical techniques to 

solve problems in finance. It encompasses a wide 

range of topics, including investments, risk man-

agement, derivatives pricing, and portfolio 

optimization. The primary objective of financial 

mathematics is to provide quantitative tools and 

models for analyzing and managing financial risk 

and uncertainty. Financial mathematics, often 

referred to as mathematical finance, is an interdisci-

plinary field that utilizes mathematical techniques 

and models to analyze financial markets, instru-

ments, and strategies (Black and Scholes, 1973). 

The application of mathematical methodologies in 

finance enables practitioners to make informed 

decisions regarding investments, risk management, 

pricing of derivatives, and portfolio optimization. 

This article aims to elucidate the mathematical 

foundations of financial mathematics and their 

practical implications in the realm of finance 

(Merton, 1973). Financial mathematics integrates 

mathematical theories with financial practice, 

providing essential tools for valuing financial 

instruments, managing risks, and making informed 
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investment decisions. Among these mathematical 

tools, differential equations are particularly signi-

ficant. They help in modeling the temporal evolution 

of various financial variables and in deriving pricing 

formulas for complex financial derivatives (Cox et 

al., 1985). Time Value of Money: The concept that 

money available today is worth more than the same 

amount in the future due to its potential earning 

capacity. The rate at which interest is paid or 

received on an investment or loan, expressed as a 

percentage.  
 

The process by which an investment earns interest 

not only on the initial principal but also on the 

accumulated interest from previous periods 

(Glarsserman, 2004). Financial mathematics, a field 

that sits at the intersection of mathematics, finance, 

and economics, is integral to understanding and 

navigating the complexities of modern financial 

systems. It involves the application of mathematical 

methods and models to solve problems related to 

financial markets, including pricing of derivatives, 

risk management, and portfolio optimization (Von et 

al., 2011). This field has grown significantly for a 

long time, driven by the increasing complexity of 

financial instruments and the need for sophisticated 

quantitative techniques to manage risk and return. 

At its core, financial mathematics provides the 

foundational tools necessary for the valuation of 

financial assets and the assessment of market risks 

(Von et al., 2015 and Zinman, 2015). These tools 

include stochastic calculus, probability theory, and 

statistical methods, which model the random 

behavior of asset prices and interest rates. The 

evolution of these models has been crucial for the 

development of modern finance, enabling practiti-

oners to predict market trends, hedge against 

potential losses, and devise strategic investment 

plans (Agarwal and Mazumder, 2013). The practical 

applications of financial mathematics are vast and 

varied. From the Black-Scholes model for option 

pricing to the Capital Asset Pricing Model (CAPM) 

for determining the expected return on assets, 

financial mathematics offers essential frameworks 

that underpin decision-making in finance (Cole et 

al., 2011; Gathergood, 2012). Moreover, the advent 

of computational techniques (Cornelis and Lech, 

2022) and the availability of large datasets have 

further enhanced the precision and applicability of 

financial models, making them indispensable tools 

in the toolkit of financial analysts and economists 

(Geradi and Meier, 2013; Sami et al., 2021). 
 

This text aims to delve into the foundations of 

financial mathematics, exploring the theoretical 

underpinnings and practical applications that make 

this field so vital. We will cover fundamental 

concepts such as arbitrage theory, stochastic 

processes, and risk-neutral valuation, providing a 

comprehensive understanding of how these prin-

ciples are applied in real-world financial scenarios. 

By bridging the gap between theory and practice, 

this exploration will equip readers with the 

knowledge and skills necessary to tackle complex 

financial challenges and innovate within the ever-

evolving landscape of global finance (Gibson et al., 

2014 and Sayingzoga et al., 2016). 
 

METHOLODOGY: 

The study employs a multi-faceted approach, inclu-

ding a literature review, case studies, and compu-

tational experiments. 
 

Review of Literature 

We review existing research on financial mathe-

matics and computational finance, focusing on key 

models and their computational implementations. 
 

Case Studies  

We analyze case studies where computational 

programs have been successfully applied to solve 

financial problems. 
 

Computational Experiments 

We implement and test various financial models 

using computational programs to evaluate their 

performance and accuracy. Modeling financial 

mathematics involves a rigorous and systematic 

approach to understanding the quantitative dynamics 

of financial markets. The mathematical metho-

dology employed in this field encompasses several 

key components, each building upon fundamental 

principles of mathematics and statistics. Here, we 

outline the primary elements of this methodology: 
 

Step I: Stochastic Processes and Brownian Motion 

Financial markets are inherently random, and 

stochastic processes are used to model this 

randomness. This system is a sum of various-

parameters indexed by time, implying the evolution 

of a system over time. Key Concept: 𝑋(𝑡) where 𝑡 is 

time and 𝑋(𝑡)represents the state of the process at 

time 𝑡. A central model in financial mathematics is 
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the Brownian motion (or Wiener process), denoted 

as 𝑊(𝑡). Continuous paths, stationarity, and 

independence of increments characterize it. 𝑊(𝑡) is 

a process such that  
 𝑊(0) = 0, 𝑊(𝑡) − 𝑊(𝑠)~𝑁(0, 𝑡 − 𝑠) for 0 ≤ 𝑠 <𝑡, and 𝑊(𝑡) has independent increments. 

Step II: Stochastic for Differential Equations 

(SDEs) 

SDEs describe the dynamics of asset prices and 

interest rates. They combine deterministic and 

stochastic components to model continuous-time 

processes in which the general form given by 

 𝑑𝑋(𝑡) = 𝜇(𝑋(𝑡), 𝑡)𝑑𝑡 + 𝜎(𝑋(𝑡), 𝑡)𝑑𝑊(𝑡)𝑑𝑋(𝑡) = 𝜇(𝑋(𝑡), 𝑡)𝑑𝑡 + 𝜎(𝑋(𝑡), 𝑡)𝑑𝑊(𝑡),  (1) 
 

where 𝜇(𝑋(𝑡), 𝑡) implies the drift term representing 

the deterministic part and 𝜎(𝑋(𝑡), 𝑡) implies the 

diffusion term representing the random part. 
 

Step III:  Applying the Itô calculus 

Itô calculus extends traditional calculus to stochastic 

processes. Itô's lemma, a fundamental result, 

provides the differential of a function of a stochastic 

process. Itô's Lemma: For 𝑋(𝑡) following  𝑑𝑋(𝑡) = 𝜇𝑑𝑡 + 𝜎𝑑𝑊(𝑡) and a twice differentiable 

function 𝑓(𝑋, 𝑡),  
 𝑑𝑓(𝑋, 𝑡) = (𝜕𝑓𝜕𝑡 +𝜇𝜕𝑓𝜕𝑋 + 12 𝜎2 𝜕2𝑓𝜕𝑋2)𝑑𝑡 +∂𝑋2)+𝜎 𝜕𝑓𝜕𝑋 𝑑𝑊(𝑡).    (2) 

 

Step IV:  Calculate the risk-neutral valuation 

In financial mathematics, the concept of a risk-

neutral measure is used for pricing derivatives. 

Under the risk-neutral measure, the discounted price 

of a financial asset is a martingale. Fundamental 

Theorem of Asset Pricing: States that a market is 

arbitrage-free if and only if there exists a risk-

neutral measure ℚ̅ such that the discounted price 

process is a martingale. 

Step V:  Using partial Differential Equations 

(PDEs) 

PDEs arise in the pricing of derivative securities. 

The Black-Scholes equation, for example, is a PDE 

that governs the price of European options. Black-

Scholes Equation: Derived using Itô's lemma and 

the principle of no-arbitrage, 

 𝜕𝑉𝜕𝑡 + 12 𝜎2𝑆2 𝜕2𝑉𝜕𝑆2 + 𝑟𝑆 𝜕𝑉𝜕𝑡 − 𝑟𝑉 = 0,         (3) 
 

Where 𝑉 is the option price, 𝑆 is the underlying asset 

price, 𝜎 is the volatility, and 𝑟 is the risk-free rate. 
 

Step VI: Using Numerical Methods 

Analytical solutions to SDEs and PDEs are often not 

possible for complex models. Numerical methods, 

such as finite difference methods, Monte Carlo 

simulations, and binomial/trinomial trees, are 

employed to approximate solutions. The Monte 

Carlo Simulation: Uses random sampling to estimate 

the expected value of complex financial instruments, 

 𝑉̂ = 1𝑁 ∑ 𝑉𝑖𝑁𝑖=1 ,            (4) 
 

Where 𝑉𝑖  are the simulated payoffs, and 𝑁 is the 

number of simulations 
 

Step vii: Applying the Optimization Techniques 

Portfolio optimization and risk management often 

involve solving optimization problems. Techniques 

such as quadratic programming and dynamic pro-

gramming are used to determine optimal asset 

allocations. Markowitz Portfolio Optimization: 

Minimizes portfolio variance subject to a given 

expected return,  
 min𝑤 𝒘𝑻 ∑ 𝒘 subject to 𝒘𝑻𝜇 = 𝜇𝑝, 𝒘𝑇1 = 1. 
 

Where w is the vector of asset weights, 𝛴 is the 

covariance matrix, 𝜇 is the vector of expected 

returns, and 𝜇𝑝 is the target portfolio return. 

These methodologies form the backbone of financial 

mathematics, enabling practitioners to develop 

robust models for pricing, hedging, and optimizing 

financial instruments. By integrating these 

mathematical techniques, we can better understand 

and predict the behavior of financial markets, 

thereby enhancing decision-making and strategic 

planning in finance. 
 

Creating Mathematical Model 

Deterministic Differential Equations: 

http://www.universepg.com/
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Deterministic models describe systems that evolve 

over time with no randomness. For instance, the 

compound interest model can be expressed as an 

ordinary differential equation (ODE). 
 𝑑𝑝(𝑡)𝑑𝑡 = 𝑟𝑝(𝑡),           (5) 
 

Where 𝑃(𝑡) is the price at time 𝑡 and 𝑟 is the interest 

rate. 
 

Black-Scholes Model 

The Black-Scholes model is a seminal work in 

financial mathematics, providing a closed-form 

solution for pricing European call and put options. 

The model assumes that the price of the underlying 

asset follows a geometric Brownian motion, 
 𝑑𝑆(𝑡) = 𝜇𝑆(𝑡)𝑑𝑡 + 𝜎𝑆(𝑡)𝑑𝑊(𝑡).        (6) 
 

Interest Rate Models Interest rate models describe the evolution of 

interest rates over time. Common models include: 

Vasicek Model: 
 𝑑𝑟(𝑡) = 𝑎(𝑏 − 𝑟(𝑡))𝑑𝑡 + 𝜎𝑑𝑊(𝑡).                                 (7) 
 

This mean-reverting model assumes that the interest 

rate 𝑟(𝑡) tends to revert to a long-term mean  

𝑏 with speed 𝑎. 

 

Cox-Ingersoll-Ross (CIR) Model 
 𝑑𝑟(𝑡) = 𝑎(𝑏 − 𝑟(𝑡))𝑑𝑡 + 𝜎√ 𝑟(𝑡)𝑑𝑊(𝑡).       (8) 
 

The CIR model ensures that interest rates remain 

positive by incorporating a square-root diffusion 

term. 
 

Optimal Investment Strategies 

Optimal investment problems involve determining 

the best portfolio allocation to maximize expected 

returns while minimizing risk. The Hamilton-Jacobi-

Bellman (HJB) equation is a key tool in solving 

these problems. For a portfolio (𝑡) invested in risky 

asset 𝑆(𝑡) and risk-free asset 𝐵(𝑡), the wealth 𝑋(𝑡) 

evolves as: 

 𝑑𝑋(𝑡) = 𝜋(𝑡)𝑑𝑆(𝑡) + (𝑋(𝑡) − 𝜋(𝑡))𝑟𝑑𝑡.        (9) 
 

The HJB equation for the value function 𝑉(𝑋, 𝑡) is: 
 𝜕𝑉𝜕𝑡 + 𝑀𝑎𝑥𝑋𝜋[𝜋𝜇 𝜕𝑉𝜕𝑋 12 𝜎2𝜋2 𝜕2𝑉𝜕𝑋2] + 𝑟𝑋 𝜕𝑉𝜕𝑋 = 0,      (10) 

 

Advanced Topics in Financial Mathematics 

Stochastic Processes 

Mathematical models that describe the evolution of 

financial variables over time, taking into account 

random fluctuations and uncertainty. 
 

Options Pricing Theory 

The Black-Scholes model and its extensions are 

widely used to price options and other derivatives, 

incorporating factors such as volatility and time to 

expiration. 
 

Monte Carlo Simulation 

A computational technique used to estimate the 

probability distribution of outcomes in complex 

financial systems by generating random samples 

from relevant probability distributions. 
 

Value at Risk (VaR) 

A statistical measure of the maximum potential loss 

that a portfolio may incur over a specified time 

horizon at a given confidence level, used for risk 

management purposes. 
 

Challenges and Future Directions 

Time Value of Money 

The concept that a certain amount of money 

today has different value than the same am-

ount in the future due to factors like interest 

rates, inflation, and opportunity costs. 
 

Discounted Cash Flow Analysis 

A method used to evaluate the present value 

of `future cash flows by discounting them at 

an appropriate interest rate. 
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Interest Rates and Compounding  

Understanding different types of interest rates 

(simple, compound) and their impact on the 

valuation of financial instruments. 
 

Models and Techniques in Financial 

Mathematics 

Black-Scholes Model  

A mathematical model used to determine the 

theoretical price of European-style options by 

considering factors such as underlying asset 

price, volatility, time to expiration, and risk-

free rate. 
 

Binomial Option Pricing Model 

A discrete-time model for valuing options 

that breaks down the time to expiration into a 

number of intervals and calculates the option 

price at each interval. 
 

Capital Asset Pricing Model (CAPM)  

A model used to determine the expected 

return of an asset based on its risk as mea-

sured by beta, the risk-free rate, and the 

expected market return. 
 

Portfolio Optimization 

Mathematical techniques such as mean-vari-

ance analysis and modern portfolio theory are 

used to construct portfolios that maximize 

return for a given level of risk or minimize 

risk for a given level of return. 
 

Risk Management 

Techniques like value-at-risk (VaR) and the 

stress testing employ mathematical models to 

quantify and manage financial risk by estima-

ting the potential losses under adverse market 

conditions. 
 

Monte Carlo Simulation 

A probabilistic technique used to model the 

behavior of financial instruments and portfo-

lios by generating random variables and sim-

ulating various market scenarios. 
 

Applications of Financial Mathematics 

Computational programs are essential in risk 

management for calculating Value at Risk 

(VaR), stress testing, and scenario analysis. 

They enable the assessment of potential los-

ses under various scenarios and help in 

making informed risk management decisions 

including, Algorithmic Trading: Algorithmic 

trading relies heavily on computational pro-

grams to execute trades based on predefined 

criteria. These programs analyze data in the 

market, tracking trading opportunities, and 

execute trades at high speeds, optimizing tra-

ding strategies, Portfolio Optimization: Com-

putational programs assist in portfolio optimi-

zation by solving complex optimization pro-

blems. They help in determining the optimal 

asset allocation to maximize returns for a 

given level of risk. Techniques like mean-

variance optimization, robust optimization, 

and machine learning algorithms are com-

monly used. 
 

Option Pricing and Hedging  

Financial institutions and investors use math-

ematical  models  to  price  options  accurately and 

develop hedging strategies to mitigate risk. 
 

Asset Allocation 

Pension  funds,  endowments,  and  individual in-

vestors utilize mathematical techniques to all-

ocate assets across different classes to achi-

eve their investment objectives. 
 

Risk Management 

Banks, insurance companies, and hedge funds 

employ mathematical models to assess and 

manage various types of risk, including mar-

ket risk, credit risk, and operational risk. 
 

Investment Analysis 

Financial mathematics is used to evaluate the 

potential returns and the risks associated with 

various investment opportunities, helping in-

vestors make informed decisions. 
 

Risk Management  

Financial institutions employ mathematical 

models to quantify and manage risks, such as 

market risk, credit risk, and operational risk. 
 

Derivatives Pricing  

Complex financial instruments, such as opti-

ons and futures, are valued using mathema-

tical models derived from principles of stoc-

hastic calculus and probability theory. 
 

Portfolio Optimization  

Financial mathematics enables investors to 

construct optimal portfolios that balance risk 
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and return by diversifying investments across 

different asset classes. 
 

Optimal Interest 

Basically, optimal interest is known as the 

opportunity cost. This is classified in the followings, 
 

Interest in Mathematics 

It is thought that Jacob Bernoulli discovered the 

mathematical constant e by studying a question 

about compound interest. He realized that if an 

account that starts with 001.$ and pays say 

%100  interest per year, at the end of the year, the 

value is ;.$ 002 but if the interest is computed and 

added twice in the year, the 1$  is multiplied by 

51.  twice, yielding ..$..$ 25251001 2  Com-

pounding quarterly yields  
 

...,.$..$ 44142251001 4   and so on. 

Bernoulli modeled this as follows: 

e
n

n

n



)

1
1(lim ,            (11) 

Where n is the number of times the interest is to be 

compounded in a year. 
 

Earning Interest 

When you lend money, you often earn interest. For 

example, depositing money into a bank account is 

like lending money to the bank. They’ll use your 

cash to make loans (charging borrowers more 

interest than they pay you). The bank pays you 

interest when you use savings accounts and 

certificates of deposit (CDs) because they want you 

to keep your money at the bank. Unless you have 

something better to do with the funds, you’ll leave it 

in the bank to earn interest. 
 

Interest Rate 

The fee charged by a lender to a borrower for the 

use of borrowed money is usually expressed as an 

annual percentage of the principal; the rate is 

dependent upon the time value of money, the credit 

risk of the borrower, and the inflation rate. Here, 

interest per year is divided by the principal amount, 

expressed as a percentage. Also called interest rate. 

A rate which is charged or paid for the use of 

money. An interest rate is often expressed as an 

annual percentage of the principal. It is calculated 

by dividing the amount of interest by the amount of 

principal. Interest rates often change as a result of 

inflation and Federal Reserve Board policies. 

 For example, if a lender (such as a bank) charges a 

customer 90$ in a year on a loan of ,1000$  

then the interest rate would be  
 

.%% 9100
1000

90
  

 

When the interest is paid, for example, for a credit 

card, a mortgage, or a loan, the interest rate is 

expressed as annual percentage rate 
 

Simple Interest 

Simple interest is the interest computed on the 

principle for the entire period it is borrowed. If a 

principle of Tk. P is borrowed at a simple interest of   

r% per year for a period of   t years, then the simple 

interest is determined by the formula: 

 

trPI  Time  Rate  Principle  .
 Thus, the amount Adue at the end of period of t years is, 𝐴 =Principle + Interest= 𝑃 + 𝑃𝑟𝑡 = 𝑃(1 + 𝑟𝑡).        (12) 

Therefore, 𝑃 = 𝐴1+𝑟𝑡.            (13) 

Simple interest is charged as yearly basis. When the time is given in months, then 
 

yearst
12

monthsofnumber
  

When time is given in weeks, then 

yearst
52

weeksofnumber
  

When time is given in days, then 

years
365

days  ofnumber  
or  

360

days  ofnumber  
t  

 

Simple interest is called simple because it ignores the effects of compounding.  

http://www.universepg.com/
http://en.wikipedia.org/wiki/Opportunity_cost
http://en.wikipedia.org/wiki/Jacob_Bernoulli
http://en.wikipedia.org/wiki/E_%28mathematical_constant%29


Khatun and Iqbal / International Journal of Material and Mathematical Sciences, 6(4), 100-111, 2024 

Universe PG l www.universepg.com                                                                                                                                  106 

 

Graphical Representation of Simple Interest Simple interest is the most basic type of return. 

Depositing Tk.100 into an account with 50% simple 

(annual) interest looks like this: 

 
 

Fig. 1: Diagram of Simple Interest. 
 

I start with a principal of 100Tk.
 and earn 50Tk.

each year.  
 

Exact Simple Interest 

When the time is given in days, we calculate exact 

simple interest on the basis of 365-day year, that is 
 

365

days  ofnumber  
 t . 

 

Exact time is found as the exact number of days 

including all days except the first. Exact time may 

be obtained as the difference between serial 

numbers of the given dates. In leap years, the serial 

number of the day is increased by for all dates after 

February 28. 
 

Ordinary Simple Interest 

When we calculate interest on the basis of a 360-day 

year, that is known as ordinary simple interest 

(Banker’s rule), that is 
 

360

days  ofnumber  
 t . 

Approximate time is found by assuming that each 

month has 30 days. 
 

The time between dates 

There are four methods for computing simple 

interest between dates: 

(1) Exact time and ordinary interest (the Banker’s 

rule) ; 

(2) Exact time and exact interest ;  

(3) Approximate time and  ordinary interest ; 

(4) Approximate time and exact interest. 
 

The Banker’s rule is the common method in the 

United States and international business transact-

tions; the general practice in Canada is to use 

Method 2. Methods 3 and 4 are used very rarely. 
 

Problem: On January 10, Mr. A borrows $1000 on 

a demand loan from his bank. Interest is paid at the 

end of each quarter (March 31, June 30, September 

30, and December 31) and at the time of last 

payment. Interest is calculated at a rate of 12% on 

the balance of the loan outstanding. Mr. A repaid the 

loan with the following payments:  
            

March 1 $ 100 

April 17 $ 300 

July 12 $ 200 

August 20 $ 100 

October 18 $ 300 

Total $ 1000 
 

Calculate the interest payments required and the 

total interest paid  
 

Solution 
 

Dates No. of Days Balance Interest (I=Prt) 

Jan. 10 - Mar. 1 50 1000 100×0.12 × (50/360) = 16.67 

Mar. 1 - Mar.31 30 900 900×0.12 × (30/360) = 9.00 

Mar.31 payment= $ 25.67 
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Mar.31- Apr.17 17 900 900×0.12×(17/360)= 5.10 

Apr.17 - June30 74 600 600×0.12×(74/360)=14.80 

June 30 payment=$ 19.90 

June 30-July 12 12 600 600×0.12×(12/360)=2.40 

July 12- Aug.20 39 400 400×0.12×(39/360)=5.20 

Aug.20-Sep. 30 41 300 300×0.12×(41/360)=4.1 

Sep. 30 payment=$ 11.70 

Sep.30- Oct.18 18 300 300×0.12×(18/360)=1.80 

Oct 18 payment=$ 1.80 
 


Total interest paid = $ (25.67+ 19.90 + 11.70 + 

1.80) 

 = $ 59.07 
 

FORTRAN Program for Solving Simple Interest 

Problem: Using FORTRAN program find the 

accumulated value of sum $ 1000 for 3 years at a 

rate of 12%. Evaluate Simple interest. 
 

Solution 

FORTRAN program code: 

10 READ*,P,r,t 

S=P*(1+r*t) 

PRINT 33, S 

33 FORMAT (//2X,"S=", F10.2) 

GOTO 10 

 END 

00.1360:Output

312.01000 :Input

S
 

 

Compound Interest 
If the interest on a particular principal sum is added 

to it after each prefixed period, the whole amount 

earns interest for the next period, and then the 

interest calculated in this manner is called com-

pound interest. The period after which interest 

becomes due is called interest period or conversion 

period. If P  is the principle and r  is the interest 

rate then at the end of one year amount will be 

)1(1 rPA 
 Similarly, 

 

..................

)1( 2

112

rP

rAAA




 

n
n rPA )1(  .           (15)

 

 

In the compound interest formula the rate of interest, r is given by 

t

i
r    

yearper    period  gcompoundin  of   No.

yearper    rateinterest  
 

 
n

n
t

i
PA 






  1 .         (16) 

 

Graphical Representation of Compound Interest 

Now, reinvesting our interest annually looks like this: 
 

 

Fig. 2: Diagram of compound interest. 
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We earn 50Tk. from year 0 to 1, just like with 

simple interest. But in year 1 to 2, now that our total 

is 150Tk. , we can earn 75Tk. this year 

)15050( % giving us 225Tk. . In year 2 to 3 we 

have 225Tk. , so we earn %50  of that, or 

..Tk. 50112  
 

Accumulated value 

The interest may be converted into principal 

annually, semiannually, quarterly, monthly, weekly, 

daily or continuously. The number of times interest 

is converted in one year is called the frequency of 

conversion. The rate of interest is usually stated as 

an annual interest rate, referred to as the nominal 

rate of interest. The phrase “interest at 12%” or 

“money worth 12%” means 12% compounded 

annually; otherwise, the frequency of conversion is 

indicated, e.g., 16% compounded semiannually, 

10% compounded daily. When compounding daily, 

most U.S. banks use a 365-day year. We will use the 

following notations: 
 

.interest  of Rate

year.per  times compounded is which rateinterest  (yearly) Nominalj

year.per  periodinterest  ofNumber 

periods.interest  ofnumber  Total

. of  valuedaccumulateor   ofamount  Compound

. of luepresent va or the principle Original

m








i

m

m

n

PPS

SP

 

The interest rate per period,
m

j
i m . For example 

%j 1212   means that a nominal rate of 12% is 

converted 12 times per year i.e., 

0101
12

12
.%

%
i  being the interest per month. 

Let P be the principal, i be the interest per period, 

then accumulated value. 

At end of st1  period )1(  iPPiP   

At end of 
nd2 period 

 

2)1()1)(1()1)(1( i PiiPii i P 
 

Similarly, at end of 
thn  period n iP )1(   

niP S )1(  is the fundamental compound 

interest formula, 
n i)1(    is known as 

accumulation factor. The accumulated value S  of 

principle P  at rate mj  for t years is: 

t
m

m

mt

m

n

m

j
 P   

m

j
P  

iPS



































1

1

)1(  

 

The accumulated value under continuous com-

pounding is obtained by letting   
 

t
m

m

m

t
m

m

m

m

j
 P .    

m

j
 P S 















































1lim

1lim

         (17) 

 

We know  

tjtj

x
m

m

PeeP  S

e
m

x
  

 







 



][

1lim
.           (18) 

 

Problem: Find the accumulated value of sum $ 

1000 for 3 years at a rate of 12%  

a) Evaluate Simple interest. 

b) Evaluate Compound interest 1) annually, 2) 

Semi-annually 

 

Solution (a): Here, the principal, 1000P

, rate of interest,

120
100

12
. r time, 𝑡 = 3. 

 

Solution (b): 

1360

)31201(1000

)1(






  

.  

rtPS
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1) Here, principal, 1000P , rate of interest, 

120
100

12
.i  , time, 3n . 

We know for annual compound interest, 

9281404

)1201(1000

)1(

3

.  

.  

 i PS n






 

2) Here, principal, 1000P , rate of interest, 

0606

2

12

.% 

%

m

j
i m




 

Time, 632  tmn  

We know for semi-annual compound interest, 

5191121418

)0601(1000

)1(

6

.  

.   

iPS n






 
 

FORTRAN Program for Solving Compound 

Interest 

Problem: Using FORTRAN program find the 

accumulated value of sum $ 1000 for 3 years at a 

rate of 12%.Evaluate Compound interest 1) 

annually, 2) semi-annually.  
 

Solution: 

FORTRAN program code: 

REAL::i 

10 READ*,P,m,t,r 

n=m*t 

i=r/m 

  S=P*(1+i) **n 

PRINT 33, S 

33 FORMAT (//2X,"S=", F10.2) 

      GOTO 10 

      END 

52.1418  :Output

12.0321000  :Input

93.1404  :Output

12.0311000  :Input





S

S

 

 

CONCLUSION: 

Financial mathematics plays a critical role in 

modern finance by providing quantitative 

tools and models for analyzing and managing 

financial risk. By understanding the basic 

concepts and applications of financial mathe-

matics, practitioners can make more informed 

decisions and mitigate potential risks in the 

dynamic and complex world of finance. Diff-

erential equations, especially stochastic diffe-

rential equations, are fundamental in financial 

mathematics. They provide frameworks for 

modeling the dynamic behavior of financial 

variables, pricing derivatives, and optimizing 

investment strategies. Ongoing research con-

tinues to refine these models, incorporating 

new data and improving computational tech-

niques to better capture market realities. The 

integration of computational programs with 

financial mathematics significantly enhances 

the capability to model, analyze, and solve 

complex financial problems. The applications 

in risk management, algorithmic trading, and 

portfolio optimization illustrate the practical 

benefits of these technologies. As computa-

tional power continues to grow, the future of 

financial modeling will increasingly rely on 

sophisticated computational methods, promi-

sing more precise and efficient solutions for 

the finance industry. 
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